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Abstract 

Plants associated with symbiotic nitrogen fixing bacteria play important roles in early successional, 

riparian and semidry ecosystems. These so-called nitrogen fixing plants are widely used for 

reclamation of disturbed vegetation and improvement of soil fertility in agroforestry. Yet, available 

information about plants that are capable of establishing nodulation is fragmented and somewhat 

outdated. This article introduces the NodDB database of nitrogen fixing plants based on 

morphological and phylogenetic evidence (available at http://dx.doi.org/10.15156/BIO/587469) and 

discusses plant groups with conflicting reports and interpretation such as certain legume clades and 

the Zygophyllaceae family. During angiosperm evolution, nitrogen fixing plants became common in 

the fabid rather than in the ‘nitrogen fixing’ clade. The global GBIF plant species distribution data 

indicated that nitrogen fixing plants tend to be relatively more diverse in savanna and semidesert 

biomes. The compiled and re-interpreted information about nitrogen fixing plants enables accurate 

analyses of biogeography and community ecology of biological nitrogen fixation. 

 

Key words: Rhizobiaceae, Frankiaceae, Nostocaceae, nodulation, Fabaceae, Zygophyllaceae, root 

symbiosis, nitrogen fixing clade 

 

Abbreviations: APG = Angiosperm Phylogeny Group, GBIF = Global Biodiversity Information 

Facility, GRIN = Germplasm Resources Information Network, LPWG = Legume Phylogeny Working 

Group 

 

Introduction 

Root symbiotic associations with nitrogen fixing bacteria and mycorrhizal fungi are important 

evolutionary adaptations of plants to compete for nutrients. Nitrogen fixing plant-bacterial 

associations are widely distributed across all terrestrial biomes and continents except Antarctica. 

Nodulated plants form important components of plant communities especially in nitrogen-limited 

early successional ecosystems, riparian habitats and tropical savanna and shrubland biomes 

(Cleveland et al. 1999). In early successional habitats, nitrogen fixing plants and their root symbiotic 

microbes contribute to soil development and facilitate recruitment of other plant species and 

consumers (Walker et al. 2003). The global symbiotic biological nitrogen fixation amounts roughly 45 

Mt annually, which is the main contributor to natural terrestrial nitrogen source (Vitousek et al. 2013).  
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Nitrogen fixing mutualistic relationships between plant roots and bacteria have evolved 

multiple times in both partners (Rai et al. 2000; Santi et al. 2013; Werner et al. 2014; Doyle 2016). 

The differentiated forms of associations occur as root (or additionally stem) nodules, but in multiple 

instances plants host nitrogen fixing bacteria in undifferentiated leaf, stem or root tissues (Vessey et 

al. 2005; Santi et al. 2013). Rhizobiaceae (α-proteobacteria) and Burkholderiaceae (β-proteobacteria) 

are the most well-known nitrogen fixing bacterial groups that nodulate mostly legumes (Fabaceae; 

Sprent et al. 2017). A small genus Parasponia (Cannabaceae) has evolved independently symbiotic 

associations with Rhizobiaceae (Trinick 1980). In addition, rhizobial root nodules have been reported 

in three zygophyllaceous genera, Tribulus, Fagonia and Zygophyllum (Mostafa and Mahmoud 1951), 

but this family has received limited attention in recent treatments in spite of monodominance of some 

species in desert habitats around the world (Sheahan 2007). Frankiaceae (Actinobacteria) form 

actinorhizal root nodules with genera from multiple eurosid plant families (Chaia et al. 2010). 

Nostocaceae (Cyanobacteria) form specific root nodules in all examined members of Cycadophyta 

and inhabit leaves of the angiosperm genus Gunnera (Gunneraceae), aquatic fern genus Azolla 

(Salviniaceae; Rai et al. 2000) and shoots of bryophytes (DeLuca et al. 2007). Proteobacterial leaf 

nodules occur in some species belonging to several genera of Rubiaceae, Myrsinaceae and 

Dioscoreaceae (Miller 1990). 

In spite of the importance of nitrogen fixing symbiotic associations in agroforestry, 

information about the potential of nitrogen fixation in plants is scattered in multiple sources focusing 

of different bacterial or plant taxonomic groups. The available information is also largely conflicting 

(for example, 35.6% nodulation assignments at genus level do not match in Werner et al. 2014 and Li 

et al. 2015), which could be ascribed to differences in interpretation and level of criticism when 

assessing original reports or old reviews that contain multiple errors. To be able to assess the role of 

nitrogen fixing plants in various ecosystems and to reconstruct the evolution of nitrogen fixation in 

plants, information about the nitrogen fixation capacity must be as accurate as possible. To enable 

such analyses, we present a freely accessible database about plant genera with nodulated roots (Table 

S1). This represents a consensus about the nodulation and nitrogen fixing status based on several 

reviews and accounts for phylogenetic information to interpret the nodulation trait in unstudied groups 

and to detect potential erroneous reports. We illustrate the distribution of nitrogen fixing plants from 

the phylogenetic and macroecological perspectives. 

 

Materials and Methods 

We examined five metastudies/reviews (Rai et al. 2000; Sprent 2009; Chaia et al. 2010; Werner et al. 

2014; Li et al. 2015) and three databases - GRIN (last updated in February 2009, no longer publicly 

available; species-level for Fabaceae); Nodulation_clade (Afkhami et al. 2018; accessed 25.01.2018; 
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genus-level for Fabaceae); and TRY (Kattge et al. 2011; accessed 25.01.2018; species-level for 

streptophytes) to obtain the majority of records about nodulation and non-nodulation in terrestrial 

plant roots. Genera with no reports or conflicting reports in the above data sets were thoroughly 

searched for nodulation status in the literature. In addition, genera whose nodulation reports did not 

match expectations based on phylogeny were further searched for additional support. We used a 

Boolean search combining each genus name AND ‘nodulation OR fixation’ in Google Scholar (as of 

01.06.2017) and studied all hits with relevant matches in the whole text. Records of nodulation in 

Fabaceae were compared with recent molecular phylogenies (Lavin et al. 2001; Luckow et al. 2003; 

Bruneau et al. 2008; Bouchenak-Khelladi et al. 2010; Cardoso et al. 2013, 2015; Kyalangalilwa et al. 

2013; de la Estrella et al. 2017) to detect potential gains and losses of nitrogen fixation and estimate 

the likelihood of erroneous records. Following Sprent (2009), legume subfamilies and tribes were 

considered likely or unlikely to nodulate. Smaller clades (as in Cardoso et al. 2013, 2015; de la 

Estrella et al. 2017) were considered likely nodulating or not based on information from sources 

considered reliable. Low reliability was assigned to papers in which >10% or >50% of records out of 

>20 and >4 records per data set, respectively, were in disagreement with other studies. Due to 

conflicting reports and missing data, we weighted reports from reliable sources, unreliable sources 

and phylogeny with a score of 4, 1 and 2, respectively. Genera with scores of >2 were considered 

sufficiently proven for nodulation status; genera with scores of ≤2 were considered likely or unlikely 

to nodulate; score of 0 was not recorded.  

Since nodulation in Zygophyllaceae has received conflicting interpretations (Becking 1982; 

Bond 1983), we searched for direct (morphological, molecular) and indirect (δ
15

N signature, 

nitrogenase assays, soil nitrogen content and associated bacterial taxa) evidence for nitrogen fixation 

in this family. These results are discussed in the ecological and evolutionary perspectives of 

Zygophyllaceae. The phylogeny of Zygophyllaceae follows Lauterbach et al. (2016) and Sun et al. 

(2016). For other groups, we follow the recently updated taxonomy of the Plant List (species and 

genus level; www.theplantlist.org; accessed 01.06.2017), Angiosperm Phylogeny Group (family and 

order level; APG IV 2016) and Legume Phylogeny Working Group (LPWG 2017). The latter was 

preferred in case of inconsistencies in Fabaceae. Species, genus and family names of plants were 

corrected according to these sources.  

In the NodDB database (Table S1), all plant genera were considered associated or 

unassociated with rhizobia (incl. Rhizobiaceae, Burkholderiaceae), Frankiaceae or Nostocaceae. We 

also generated extra categories ‘likely nodulated’ and ‘unlikely nodulated’ for plant genera that 

possessed only phylogenetic implications or reports from unreliable sources (see above). In further 

binary trait-based studies, it is recommended to use these categories as nodulated and non-nodulated, 

respectively. Notably, all other plant genera absent from this data set are expected to lack the 
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nodulation capacity, although these may form undifferentiated interactions with free-living nitrogen-

fixing bacteria. 

 

Results and Discussion 

NodDB database 

The existing databases cover highly variable amount of information about plants associated with 

nitrogen fixing bacteria. Sprent (2009), Werner et al. (2014), Li et al. (2015), the Nodulation_clade, 

GRIN and TRY databases provided information about nodulation for 391, 360, 469, 505, 490 and 

1800 (220 genera in the target group) currently recognized genera, respectively. More specific 

reviews of Rai et al. (2000) and Chaia et al. (2010) supplemented information about 10 

Cyanobacteria-associated genera and 25 actinorhizal plant genera, respectively. Combining these 

basic sources as well as neglected older and more recent studies increased the available information 

about plants with or without nitrogen fixing root nodules to 590 genera based on 9446 records. 

Likelihood for nodulation was assigned to further 234 genera (mainly Fabaceae and Zygophyllaceae) 

based on their phylogenetic relationships.  

Our comparisons across reviews revealed that many of these contain highly conflicting 

information and/or interpretation of published work (Allen et al. 1981; Halliday and Nakao 1982; 

Halliday 1984; Li et al. 2015) compared with other studies, which is probably based on personal 

opinions of these authors. In addition, many case studies provide specific information about 

nodulation that is in strong disagreement with other studies (Martin and Goodding 1948; Rothschild 

1950; Bonnier and Seeger 1958; Corby 1974; Lim 1977; Högberg and Nylund 1981; Faria et al. 1984; 

Bai et al. 1987; Moreira et al. 1992; Han 1995; Himmat Singh and Pokhriyal 1997; Roggy and 

Prevost 1999; Diabaté et al. 2005). Many of such incorrect reports could be ascribed to a small 

amount of material studied, inability to recognize developing nodules, wishful thinking and perhaps 

misidentification of plant taxa. All these above-cited studies were considered unreliable. The TRY 

database contained a large proportion of incorrect information, with 29.1% and 2.5% or genera in 

target and non-target groups, respectively, misassigned. False positive assignments of members of 

Detarioideae, Caesalpinioideae and Araucariales contribute most to the erroneous data. Revisiting the 

error-infested sources revealed that potential N fixation assignments were provided overoptimistically 

based on 
15

N:
14

N ratio of foliage or no obvious reason whatsoever.  
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Fabaceae-rhizobia associations 

In general agreement with Werner et al. (2014) and Li et al. (2015), rhizobial associations are missing 

in the early diverging Fabaceae subfamilies Cercidoideae, Detarioideae (but see below for a potential 

exception), Dialioideae and Duparquetioideae. Nitrogen fixation has evolved and become widely 

distributed probably twice in Fabaceae: once in the caesalpinioid-mimosoid interface within 

Caesalpinioideae and once in the core group of Papilionoideae (Werner et al. 2014; Fig. 1). 

Unfortunately, the best focused and most up-to-date molecular studies lack resolution in these critical 

parts of the phylogeny. Within the early diverging Caesalpinioideae, the genus Tachigali (including 

recently synonymised Sclerolobium) and phylogenetically distant Campsiandra exhibit consistent 

reports about the presence of nodules, which are in conflict with the overall evolutionary pattern. 

Furthermore, there are three independent reports of nodulation in Vouacapoua palliodor, but only 

negative reports in V. americana and V. macropetalum. Similarly in Detarioideae, there are several 

independent reports of nitrogen fixation in the genus Humboldtia. These results suggest that 

nodulation may have evolved more than twice in Fabaceae, but it has not been related to explosive 

radiation of taxa in these putative additional cases.  

Negative reports about nodulation status suggest that the Papilionoideae clades Aldina, 

Amphimas, Cladrastis, Exostyleae (Lecointeoid clade), Vataireoid clade, ADA clade (Angylocalyx + 

Dipterygeae + Amburana; sensu Cardoso et al. 2012, 2015) probably diverged before the nitrogen 

fixating associations evolved in this subfamily. It cannot be, however, excluded that some of these 

groups have secondarily lost nodulation capacity, because the basal divergence patterns in 

Papilionoideae have limited phylogenetic resolution (Cardoso et al. 2015). It is important to note that 

the ability to nodulate has been secondarily lost multiple times in the crown group of Papilionoideae: 

1) Chaetocalyx-Nissolia group in the Adesmia clade (Dalbergieae); 2) genus Bocoa (Swartzieae tribe) 

and 3) Leucomphalos-Baphiopsis group in the Baphieae tribe. The single negative reports for the 

papilionoid core group genera Platysepalum (Diabate et al. 2005), Barbieria (Magalhaes and Silva 

1987) and Grazielodendron (Faria et al. 1984) warrant independent re-evaluation.  

 

Ancestors of the mimosoid group of Caesalpinioideae were nodulated (Sprent 2009; Werner 

et al. 2014). Therefore, it is remarkable that the Adenanthera clade, Newtonia-Fillaeopsis group 

(sensu Kyalangalilwa et al. 2013) and Cylicodiscus gabunensis have lost their nitrogen fixing 

associations. In addition, nodulation capacity may have been secondarily lost in two unrelated 

mimosoid genera, Parkia (s. stricto) and Zapoteca as based on multiple negative reports. Nodulation 

is also missing in Dinizia that is traditionally considered as a mimosoid genus, but phylogenies place 

it within the Dimorphandra group of caesalpinioid legumes (Bruneau et al. 2008). Some Brazilian 

species of Pterocarpus (Papilionoideae) and American species of Senegalia (sect Monacanthea; 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

mimosoid Caesalpinioideae) seem to have lost the ability to nodulate, representing the few rare cases 

of infrageneric differences in nodulation capacity in addition to Vouacapoua (Harrier et al. 1997; 

Sprent 2008).  

 

Nodulation in non-legume groups 

Phylogenetic studies suggest that rhizobial associations in Parasponia (Cannabaceae) evolved in the 

Pliocene, i.e. much later than in legume groups (Qian and Jin 2016; Sun et al. 2016). The presence of 

nodulation and nitrogen fixation ability in Parasponia was first suggested >100 years ago (Ham 

1909), but this was re-visited only several decades later. Nodulation and growth benefits were later 

confirmed for several species of Parasponia (Trinick 1980). 

All plant groups previously considered to form actinorhizal associations with Frankiaceae 

were confirmed as such in several overviews and more recent case studies. In Rosaceae, the nitrogen 

fixing trait occurs in the early diverging Dryadeae tribe that evolved in the Late Cretaceous (Chin et 

al. 2014; Qian and Jin 2016), representing the oldest extant actinorhizal group. The order Fagales 

contains three independent actinorhizal groups, viz. Casuarinaceae, Myricaceae and Alnus 

(Betulaceae). In Myricaceae, only the Neocaledonian endemic Canacomyrica has been reported as 

non-nodulating (Gauthier et al. 2000). These observations, together with its phylogenetic position at 

the base of Myricaceae suggests that Myricaceae and Alnus evolved actinorhizal associations later 

(Eocene) than Casuarinaceae (Paleocene; Larson-Johnson 2015; Magallón et al. 2015; Qian and Jin, 

2016). Actinorhizal habit in Rhamnaceae has probably evolved twice in tribes Colletiae and 

Phyliceae, with both events dating back to the Oligocene-Miocene (Onstein et al. 2015). Nodulation 

in Elaeagnaceae, Datisca (Datiscaceae) and Coriaria (Coriariaceae) probably evolved in the 

Paleocene-Eocene boundary, Miocene and Miocene, respectively (Qian and Jin 2016). 

The gymnosperm families Cycadaceae, Stangeriaceae and Zamiaceae represent a single group 

that is nodulated by Cyanobacteria. This trait is ancestral to all modern members of Cycadophyta, 

because species of all examined genera host nitrogen-fixing bacteria (Rai et al. 2000). The modern 

cycads date back to the Late Jurassic (Qian and Jin 2016), rendering this group the oldest extant 

nitrogen-fixing plant clade. It is not known whether any other members of the large number of extinct 

gymnosperm lineages were associated with nitrogen fixing microbes. 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Zygophyllaceae, an overlooked nodulating family 

Zygophyllaceae is one of the oldest groups of N fixing plants that evolved in Late Cretaceous (Qian 

and Jin 2016; Sun et al. 2016). Nodulation was first observed for the genus Tribulus >100 years ago 

(Isachenko 1913), but received limited attention for three decades. Nodulation and growth benefits 

were later confirmed for the Zygophyllaceae genera Fagonia, Larrea, Tribulus and Zygophyllum 

(Sabet 1946; Mostafa and Mahmoud 1951; Athar and Mahmood 1972; Medan and Tortosa 1983), 

often accompanied with convincing illustrations about nodule morphology. It has remained unclear, 

whether Zygophyllaceae associate with rhizobia, Cyanobacteria or a variety of groups. Using electron 

microscopy, Mahmood & Athar (1998, 2006) described abundant cells belonging to both 

Rhizobiaceae and Cyanobacteria in nodules of Tribulus terrestris, whereas only Rhizobiaceae spp. 

were described from multiple zygophyllaceous taxa previously (Sabet 1946; Mostafa & Mahmoud 

1951). However, in Zygophyllum fabago nodules collected from Iran, we consistently detected 

abundant Vibrio sp. based on molecular analysis of the nitrogenase gene (S. Rahimlou, unpublished). 

Inconsistent development of nodules, inability to detect nitrogenase activities in some studies 

and perhaps limited access to old literature led several authors to exclude Zygophyllaceae from the list 

of nitrogen fixing plants (e.g. Vessey et al. 2005; Wheeler et al. 2005; Franche et al. 2009; Werner et 

al. 2014; Li et al. 2015; Doyle 2016) with no commenting. Comparative studies of δ
15

N in plant 

tissues do indeed support this opinion (Shearer and Kohl 1983; Omondi et al. 2013). However, the 

relatively high δ
15

N values in leaves of Zygophyllaceae may result from non-mycorrhizal habit of this 

family (Brundrett 2017), which contrasts to legumes, grasses and most other co-occurring plants that 

form arbuscular mycorrhiza. The presence and type of mycorrhiza has a strong impact on δ
15

N values 

in seasonally dry ecosystems (Schmidt and Stewart 2003).  

  In addition to direct evidence for nodulation in several species of the four Zygophyllaceae 

genera, multiple times greater soil nitrogen (including nitrate) content occurs under the canopy of 

Larrea tridentata (Parker et al. 1982; Jenkins et al. 1988) and Porlieria chilensis (Gutierrez et al. 

1993) compared with surrounding vegetation. Although Jenkins et al. (1988) found low nodulation 

capacity of soil from L. tridentata in roots of a legume Prosopis sp., the poor nodulation can be 

ascribed to partner specificity of symbiotic rhizobia (Mostafa and Mahmoud 1951; Bala and Giller 

2001). In another study, Demba Diallo et al. (2004) found much higher proportion of Rhizobiaceae 

under the zygophyllaceous bush Balanites aegyptiaca compared with the nodulated legume Acacia 

tortilis in Senegal, suggestive of symbiotic nitrogen fixation. Besides these circumstantial evidence, 

Zygophyllaceae root nodules do contain rhizobia that are capable of nodulating legume species 

(Mostafa and Mahmoud, 1951; Athar and Mahmood 2006). Since all four nodulated genera of 

Zygophyllaceae are placed in different main clades of the family (Lauterbach et al. 2016; Sun et al. 

2016), it is highly probable that the capacity to fix nitrogen is an ancestral trait. Remarkably, 
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Zygophyllaceae falls outside the ‘nitrogen fixing clade’ of angiosperms (cf. Soltis et al. 1995; Doyle 

2016) and may be older than the individual nodulated groups therein (Magallón et al. 2015; Qian and 

Jin 2016), suggesting that the nitrogen fixing clade should be extended to the entire Fabids (sensu 

APG IV 2016; Fig. 1).  

These results suggest that the evolutionary ecology of plant-rhizobial associations need to be 

revised. Therefore, it is of particular importance to continue studies on the ecophysiology and 

specificity of symbiotic root associations in Zygophyllaceae. Our preliminary results indicate that 

individuals of Zygophyllum fabago do indeed associate with Rhizobiaceae (S. Rahimlou, 

unpublished). Furthemore, species of Zygophyllaceae have been commonly used as reference plants 

to quantify the proportion of nitrogen symbiotically fixed in roots of legumes (e.g. Shearer et al. 1983; 

Shearer and Kohl 1986; Omondi et al. 2013). Because of their C4 photosynthesis, non-mycorrhizal, 

and nitrogen fixing habit, Zygophyllaceae spp. are clearly unsuited for δ
15

N analysis-based reference 

for Fabaceae, indicating that the presented values for fixed nitrogen in multiple dryland studies and 

regional extrapolations need to be re-calculated. 

 

Distribution of N fixing plants 

We used the above-described nodulation assignments to illustrate the global distribution of nitrogen 

fixing plants based on GBIF data (http://gbif.org/; see figure legend), anticipating the biases in 

taxonomic and spatial information (Maldonado et al. 2015). Based on GBIF records, the relative 

species richness of nitrogen fixing plants in relation to other plants is highest in savanna and 

semidesert biomes across the world (Fig. 2), supporting the suggestion of Cleveland et al. (1999) that 

nitrogen fixation capacity is most beneficial in seasonally dry habitats and drylands, where N 

limitation is usually strongest. 

 

Conclusive remarks 

Here we propose a consensus reference database NodDB about nodulation in plant genera that 

accounts for critically revised records and plant phylogeny (Table S1). These data can be further used 

to address evolutionary ecological hypotheses regarding nodulation. Information about the potential 

nitrogen fixers may greatly improve estimates of nitrogen cycling in plant communities from fine to 

landscape scales and to plan further research on coevolution and host shifts. Knowledge about 

nitrogen fixing capacity facilitates development of agroforestry planning and selection of plant 

species for biofertilisation and reclamation of soil. 
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Our data raise a hypothesis that rhizobial symbiosis has evolved more than twice (up to six 

times) in Fabaceae, once in Cannabaceae and once in Zygophyllaceae (Fig. 1). Bacterial associations 

in Zygophyllaceae and small groups of detarioid and caesalpinioid legumes certainly require further 

attention. Actinorhizal associations evolved on nine independent occasions in angiosperms, whereas 

cyanobacterial nodules are known only from all three extant families of cycads and as co-colonisers in 

Zygophyllaceae. Although the last nitrogen fixing plant groups were discovered in the 1970s, it is 

possible that some rare nitrogen fixing taxa remain to be discovered from poorly studied habitats.  

Understanding the distribution of nitrogen fixation among plants is far from complete. 

Resolving the multiple potential gains and losses in Fabaceae certainly requires further confirmation 

of nodulation or the lack of it in critical taxa outlined above. Phylogenomics analyses will provide 

improved taxonomic resolution and deeper insights into the evolutionary history of nodulation in 

Fabaceae (Doyle 2016). Comparative genomics of nitrogen fixing bacterial groups are likely to reveal 

certain functional differences among these symbioses.  
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Figure legends 

 

 

 

Fig. 1. Phylogenetic placement of plants with nitrogen fixing root nodules: (a) overall distribution of 

nitrogen fixing plant clades in the phylogram of seed plants; and (b) distribution of nitrogen fixing 

trait in the Fabaceae family. The phylograms are taken from (a) Qian & Jin (2016) and (b) compiled 

from Bruneau et al. (2008), Cardoso et al. (2015), de la Estrella et al. (2017) and LPWG (2017). Cyan 
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branches, cyanobacterial associations; violet branches, actinorrhizal associations; blue branches, 

rhizobial associations. In (b): white branches, non-rhizobial associations; yellow branches, unlikely 

rhizobial associations; light blue, likely rhizobial associations; red, reported rhizobial associations, 

which require confirmation.  

 

 

 

 

 

Fig. 2. Species richness of nitrogen fixing vascular plants relative to total species richness as based on 

all GBIF vascular plant records with coordinates (GBIF.org, 10th November 2017, GBIF Occurrence 

Download https://doi.org/10.15468/dl.4nqoev). Relative richness is calculated per equal-area 

polygons (ISEA3H) with size ca 7000 km2. Colors show quantiles. Only terrestrial polygons hosting 

more than 50 records are shown. 
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