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Fine-root traits in the global spectrum of 
plant form and function

Carlos P. Carmona1,6 ✉, C. Guillermo Bueno1,6, Aurele Toussaint1,6, Sabrina Träger1,2,6, 
Sandra Díaz3,4, Mari Moora1, Alison D. Munson5, Meelis Pärtel1, Martin Zobel1 & Riin Tamme1,6

Plant traits determine how individual plants cope with heterogeneous environments. 
Despite large variability in individual traits, trait coordination and trade-offs1,2 result 
in some trait combinations being much more widespread than others, as revealed in 
the global spectrum of plant form and function (GSPFF3) and the root economics 
space (RES4) for aboveground and fine-root traits, respectively. Here we combine the 
traits that define both functional spaces. Our analysis confirms the major trends of the 
GSPFF and shows that the RES captures additional information. The four dimensions 
needed to explain the non-redundant information in the dataset can be summarized 
in an aboveground and a fine-root plane, corresponding to the GSPFF and the RES, 
respectively. Both planes display high levels of species aggregation, but the 
differentiation among growth forms, families and biomes is lower on the fine-root 
plane, which does not include any size-related trait, than on the aboveground plane. 
As a result, many species with similar fine-root syndromes display contrasting 
aboveground traits. This highlights the importance of including belowground organs 
to the GSPFF when exploring the interplay between different natural selection 
pressures and whole-plant trait integration.

The GSPFF3 showed that most of the variability in six key aboveground 
traits that are essential for plant growth, survival and reproduction can 
be summarized by one plane defined by two axes: one reflecting the size 
of the plant and its aboveground organs, and the other representing the 
leaf economics spectrum5. Within this space, species are aggregated in 
two functional hotspots: within the trait space of herbaceous plants and 
trees, respectively3. Owing to the recent development of open-access 
fine-root trait datasets6–8, it is now possible to empirically ask how 
these traits relate to the GSPFF.

Fine roots (either considered as less than 2 mm in diameter or as roots 
of orders 1–3)4 are responsible for acquiring essential soil resources, 
mediating biogeochemical cycling and considerably contributing to 
stabilizing organic matter in soils9,10. Two alternative hypotheses have 
been formulated regarding the organization of species with respect 
to their fine-root traits. First, since fine roots can be considered the 
belowground equivalent of leaves because their main role is acquiring 
resources11, the plant economics spectrum hypothesis postulates that 
plant species are organized along a single dimension of the root trait 
spectrum, aligned with the leaf spectrum12–14. Accordingly, there should 
be a high degree of covariation between leaf and root traits. However, 
recent analyses have described a two-dimensional RES4 with limited 
correspondence with the leaf economics spectrum15–17. One of the RES 
dimensions, defined by root nitrogen and root tissue density, reflects a 
root tissue conservation gradient that represents a trade-off between 
fast and slow return on investment4, and can be considered analogous 
to the leaf economics spectrum. The other dimension represents a 

gradient of plant–fungal interactions in roots, defined by a trade-off 
between root diameter and specific root length4,18, with higher degrees 
of interaction expected for thicker roots. This dimension seems to have 
no equivalent aboveground.

We performed a joint correlative analysis of the coordination and 
trade-offs of the aboveground and fine-root traits of vascular plants 
using a global dataset that combines the data that formed the main 
basis of the GSPFF3, with fine-root trait data used to describe the RES4. 
We obtained information for aboveground traits for 39,260 plant spe-
cies from the TRY database6. Specifically, this included a set of funda-
mental functional traits: plant height, leaf area, specific leaf area, leaf 
nitrogen concentration, specific stem density and seed mass, which 
are associated with different key aspects of plant ecology3 (see Meth-
ods; Extended Data Table 1). Fine-root trait information was obtained 
from the Global Root Trait (GRooT) database8 for 2,050 species. We 
considered four fine-root traits that have been previously used to char-
acterize the RES4,18,19: root diameter specific root length, root nitrogen 
concentration and root tissue density (Extended Data Table 1; Extended 
Data Fig. 1). Both databases had 1,719 species in common, of which 301 
(belonging to 73 families; Extended Data Fig. 2) had complete empirical 
information for all selected traits.

To assess the main trends of trait variation, we characterized the 
trait space using a principal component analysis (PCA) based on all 
the aboveground and fine-root traits of the subset of species with 
complete empirical information (301 species). The first four principal 
components of the PCA accounted for 76% of the total variation. We 
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applied varimax rotation to these axes to obtain a four-dimensional 
space where traits are best related to axes (Extended Data Tables 2, 3). 
The first two components (C1 and C2) were mostly related to above-
ground traits (Fig. 1a), and the other two components (C3 and C4) 
were related to fine-root traits (Fig. 1b). The C1–C2 and C3–C4 planes, 
therefore, corresponded closely to the two-dimensional spaces that 
have been reported in the GSPFF3 for aboveground traits and the RES4 
for fine-root traits (see Supplementary Note 1 and Extended Data Fig. 3 
for a detailed description of the patterns). Hereafter, we refer to the 
C1–C2 plane as the ‘aboveground plane’ and to the C3–C4 plane as 
the ‘fine-root plane’. Existing evidence for a whole-plant economic 
spectrum has produced mixed results, with some studies describing 
a tight correspondence between leaf and fine-root traits12,14 and others 
indicating loose, complex or no relationship17,19–21. If there was a strong 
correspondence between aboveground and fine-root traits, the number 
of dimensions necessary to explain variation after combining traits 
should be smaller than the sum of the individual dimensionalities of 
the GSPFF and the RES.

The fact that four dimensions are required to adequately capture 
non-redundant trait variation, as found in the present study, suggests 
that aboveground and fine-root trait syndromes involve traits that are 
not analogous to each other (Extended Data Fig. 4). As a consequence, 
combining aboveground and fine-root traits can reveal patterns among 
species that are not immediately evident when the GSPFF or the RES are 
examined separately. For example, eastern hemlock (Tsuga canadensis) 
and black beech (Nothofagus solandri) are two tree species that are very 
close on the aboveground plane but are far apart on the fine-root plane, 
because black beech has higher specific root length and root tissue 
density values. These traits have been associated with the ability of the 
Nothofagaceae family to dominate in unfertile soils in New Zealand15. 
The opposite pattern is very common; for example, while Scots pine 
(Pinus sylvestris), common sunflower (Helianthus annuus) and common 
persimmon (Diospyros virginiana) are strongly separated from each 
other on the aboveground plane, these three species occupy similar 
areas on the fine-root plane (for an examination of species position 

in the trait space, see https://globaltrait.shinyapps.io/GlobalTraits; 
Supplementary Application 1).

There are vastly different levels of aggregation of species in differ-
ent areas of the two planes. Using the same 301 species, we built a null 
model considering multivariate normal distributions with the same 
means and covariance matrix as the observed data22, and compared 
the amount of space occupied by different quantiles of the distribu-
tions. We found that the distribution of species on both the above-
ground and the fine-root planes is more clumped than expected, with 
any given observed quantile occupying on average 29% and 14% less 
trait space than the same quantiles of the aboveground and fine-root 
null models, respectively (Extended Data Fig. 5). However, the aggre-
gation of species aboveground is mainly around two functional hot-
spots, whereas there is only one hotspot on the fine-root plane. The 
two aboveground hotspots, which are far from the centre of the spec-
trum (leading to higher functional divergence than in the null model; 
observed functional divergence = 0.58 versus null model functional 
divergence = 0.38, P = 0.002, n = 500), are associated with a bimodal 
distribution in size-related traits (C1, described by plant height, seed 
mass and specific stem density), corresponding to herbaceous species 
and angiosperm trees3. By contrast, on the fine-root plane, species 
are concentrated around a central hotspot (leading to low functional 
divergence: observed functional divergence = 0.34 versus null model 
functional divergence = 0.38, P = 0.016, n = 500), whereas the surround-
ing areas are sparsely occupied. Overall, these results are consistent 
with the idea that a small number of trait syndromes are extremely 
prevalent, whereas many others, while viable, are rare3,22. This differ-
ence may be related to the lack of sufficient data on root traits that scale 
with plant size (for example, rooting depth or root system size)23 that 
might contribute to variation along a size-dependent belowground 
dimension analogous to C1.

Next, we explored how these patterns of occupation of the functional 
space differed between herbaceous and woody species, and also among 
families and biomes. For this, we used a larger dataset, including 1,218 
species (from 127 families) with empirical information for at least three 
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Fig. 1 | The aboveground and fine-root planes. Probabilistic species 
distributions in the space defined by a PCA followed by varimax rotation 
based on aboveground and fine-root traits of species with complete trait 
information (n = 301). Compared with the unrotated PCA, the varimax 
rotation retrieves the fundamental structure of trait variation in the dataset in 
a more interpretable and consistent way (less dependent on the subset of 
species considered; see Methods). a, First and second components (and 
proportion of variance explained). b, Third and fourth components. The 
colour gradient depicts different densities of species in the space (the red 

areas are more densely populated). The arrow length is proportional to the 
loadings of the considered traits (see Extended Data Table 2). The 
aboveground traits (represented by green arrows) are specific leaf area (sla), 
leaf nitrogen concentration (ln), leaf area (la), seed mass (sm), plant height 
(ph) and specific stem density (ssd). The fine-root traits (represented by 
brown arrows) are specific root length (SRL), root diameter (D), root tissue 
density (RTD) and root nitrogen concentration (N). The thick contour lines 
indicate the 0.5 and 0.99 quantiles, and the thinner lines indicate 0.6, 0.7, 0.8 
and 0.9 quantiles.
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aboveground and two fine-root traits (Extended Data Table 1, Extended 
Data Fig. 6). We used a phylogenetically informed imputation proce-
dure22 to complete trait information for those species (Supplementary 
Methods 1) and estimated the functional space following the same 
procedure as with the complete dataset.

We examined the patterns of functional differentiation among 
groups of species, finding that fine-root traits were more similar than 
aboveground traits, when comparing herbaceous and woody spe-
cies, different families or biomes. This agrees with the observation 
of a single functional hotspot on the fine-root plane but two hotspots 
aboveground, meaning that species with similar fine-root syndromes 
can display contrasting aboveground traits. Accordingly, the overlap 
between the distributions of herbaceous and woody species was more 
than four times higher on the fine-root plane than aboveground (dis-
similarity fine-root plane = 18.7%, dissimilarity aboveground = 81.6%). 
Woodiness explained 36.5% of the variance of the position of species 
on the aboveground plane versus a mere 0.4% on the fine-root plane 
(similar to what was found in previous explorations of the RES4), which 
means that the suites of fine-root traits of herbaceous and woody spe-
cies are virtually indistinguishable, in contrast to previous results based 
on a less diverse set of herbaceous species18.

The dissimilarity between pairs of families was also generally higher 
aboveground than on the fine-root plane (mean ± s.d.: dissimilarity 
aboveground = 76.2% ± 19.5, dissimilarity fine-root plane = 58.6% ± 
12.0). For example, Fagaceae and Pinaceae overlapped only 4% on the 
aboveground plane, but 62% on the fine-root plane, indicating that the 
large differences among the aboveground traits of angiosperms and 
gymnosperms3 are not mirrored at the level of fine-root traits. This was 
verified by PERMANOVA analyses, where differences among families 
explained almost twice as much variation aboveground (60.8%) as on 
the fine-root plane (32.3%). However, 21% of the family pairs presented 
higher dissimilarities on the fine-root plane than on the aboveground 
plane. These cases mostly belonged to pairs of families including almost 
exclusively herbaceous species (for example, Poaceae versus Aster-
aceae) or pairs of almost exclusively woody families (Fagaceae versus 
Lauraceae), confirming that differences in traits aboveground are 
largely driven by plant size.

Although biomes explained less variation on the aboveground plane 
(PERMANOVA: 13.4%) than families, dissimilarities between pairs of 
biomes were always larger aboveground than on the fine-root plane 
(dissimilarity aboveground = 42.8% ± 18.1, dissimilarity fine-root 
plane = 21.6% ± 6.8). Furthermore, biomes had virtually no explanatory 
power for fine roots (PERMANOVA: 1.3%), which is in agreement with 
previous observations at the biome level4 and with the notion that the 
proportion of total variation that can be found in local communities is 
larger for fine-root than for aboveground traits24. For example, while the 
two biomes that were most different on the aboveground plane (tem-
perate grassland/desert versus tropical rainforest) overlapped only 
27%, the two most different biomes on the fine-root plane (subtropi-
cal desert versus temperate rainforest) still highly overlapped (62%).

We further asked whether the species composing each group were 
aggregated or dispersed, by examining the patterns of species redun-
dancy25 within herbaceous and woody species, families and biomes. 
Groups with high redundancy are composed of species with similar trait 
values. We found that the average redundancy of all groups considering 
the four-dimensional space was always higher than on the aboveground 
plane, which was, at the same time, higher than on the fine-root plane 
(Extended Data Table 4). This result demonstrates that groups tend to 
partition the total and aboveground trait space (that is, the amount of 
variation among groups is relatively larger) and share the fine-root trait 
space. Herbaceous species were more redundant than woody species in 
all considered aspects of the trait space. This is in agreement with previ-
ous descriptions of woody species encompassing a larger amount of the 
fine-root trait space than herbaceous species4 and with the notion that 
the hotspot for woody species occupies a particular area of an otherwise 

very wide functional distribution of woody species3. Altogether, the 
suites of traits of herbaceous species are more restricted than those of 
woody species. In addition, herbaceous species follow, on average, a fast 
return on investment strategy26, which might reduce the potential for 
fine-root trait variation. Redundancy was higher on the aboveground 
plane than on the fine-root plane for all families (t20 = −11.13, P < 0.001; 
Extended Data Table 4), showing that confamilial species are generally 
more similar in their aboveground traits than in their fine-root traits. 
The distribution of species within biomes was not as constrained as 
within families, but redundancy in biomes aboveground also tended 
to be higher than on the fine-root plane (t7 = −2.03, P = 0.082), which is 
in agreement with observations showing that individual biomes, and 
even local sites, contain a large proportion of the global variation in 
both aboveground and fine-root traits4,5,27,28.

The fact that combining the GSPFF and the RES does not fundamen-
tally change the organization of the two-dimensional spectra that have 
been described when considering aboveground3 and fine-root4 traits 
separately, along with the large differences between the dissimilarity 
and redundancy patterns observed, cast doubts about the generality of 
the high coordination between fine-root and leaf economic traits12–14. 
However, more-detailed analyses revealed evidence of coordination 
between aboveground and fine-root trait syndromes. For example, 
dissimilar families aboveground tended to be also dissimilar in their 
fine-root traits (Fig. 2a). Dissimilarities among biomes on both planes 
were positively correlated (Fig. 2b), which is probably associated with 
the fact that biomes with similar climates occupy similar areas of the 
functional space, on both the aboveground and the fine-root planes 
(Fig. 2c, d). Furthermore, more-redundant families were redundant in 
all considered aspects of the functional space (the four-dimensional 
space and the aboveground and fine-root planes), suggesting that 
families are organized along a gradient of whole-plant functional 
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Fig. 2 | Patterns of dissimilarity on the aboveground and fine-root planes. 
a, b, The relationship between the dissimilarity on the aboveground and 
fine-root planes between pairs of: families (n = 210 pairs, 21 families; r = 0.19, 
P = 0.037, Mantel test with 999 repetitions) (a) and biomes (n = 28 pairs,  
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dissimilarity is positively correlated with the dissimilarities between pairs of 
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Mantel test with 999 repetitions) (c) and the fine-root trait plane (n = 28 pairs,  
8 biomes; r = 0.54, P = 0.036, Mantel test with 999 repetitions) (d). The thick 
lines show the fits of major axis regressions.
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specialization, ranging from families with many species displaying 
very similar trait syndromes (for example, Poaceae and Pinaceae) to 
more functionally diverse families (for example, Polygonaceae and 
Rubiaceae; Fig. 3a). By contrast, we observed a negative relationship 
between redundancy patterns on the aboveground and fine-root planes 
in biomes (Fig. 3b), which stems from different associations between 
redundancy on each of the planes and net primary productivity (NPP). 
On the one hand, biomes with higher aboveground productivity hosted 
more redundant species on the aboveground plane (Fig. 3c). On the 
other hand, redundancy on the fine-root plane was negatively associ-
ated with belowground NPP (Fig. 3d). These results suggest that, while 
low biomass aboveground leads to lower dominance and higher trait 
diversity aboveground, low water availability and high seasonality 
reduce the diversity of belowground traits in biomes18. The contrast-
ing relationships with NPP resulted in a lack of relationship between 
the redundancy of species in the four-dimensional space and the total 
NPP of the biome (that is, aggregating aboveground and belowground 
NPP; Fig. 3e).

Combining the most comprehensive trait databases available, we 
found that incorporating fine-root traits into the GSPFF3 enriches it with 
non-redundant information and exposes a general pattern of higher 
functional trait differentiation for aboveground traits than for fine-root 
traits. Our results confirm the paramount importance of the size and 
leaf tissue-quality dimensions aboveground, and the acquisition versus 
conservation and the plant–fungal interaction trade-offs between fine-
root traits4,17,18 belowground. However, our results do not confirm the 
strong covariation between leaf and fine-root traits predicted by the 
plant economics spectrum hypothesis12–14. In addition, we found that 
plants differentiate preferentially in the aboveground rather than in 
the fine-root part of this functional trait space. This result seems to be 
directly associated with the very different nature of organ function and 
resource acquisition in the soil environment. Greater differentiation 
in aboveground trait syndromes than in fine roots may have emerged, 

for example, from less-stable environmental conditions29, and stronger 
and more heterogeneous effects of fire and large herbivores30 above-
ground. Nonetheless, despite this apparent decoupling of the varia-
tion of aboveground and fine-root strategies, we also found evidence 
of whole-plant coordination, indicated by the correlated patterns of 
dissimilarity and redundancy among families and biomes.

Understanding the covariation of aboveground and belowground 
traits will illuminate how evolution has shaped plant strategies to cope 
with biotic and abiotic environments. Such understanding will require 
considering that fine-root traits are by no means the only relevant 
belowground traits, and that the belowground trait space is likely to 
have more dimensions beyond those described here, partially inde-
pendent or associated with those aboveground. For example, previ-
ous assessments of biomass allocation patterns23,31 have shown that 
aboveground and belowground biomass are positively correlated, so 
that the size of the belowground system is likely to be associated with 
the first, size-related, component. This suggests that this dimension 
could be interpreted in terms of the size of the whole plant, and thus the 
two functional hotspots observed in the aboveground space might also 
be observed in the belowground space. However, not enough empiri-
cal data are currently available to adequately test these ideas. Future 
inclusion of underrepresented clades and other belowground traits, 
such as mycorrhizal traits18,32, root architectural or clonal traits17,33, may 
further modify the belowground trait dimensionality and improve our 
understanding of the full form and function of vascular plants.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-021-03871-y.
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Methods

Data collection and processing
Aboveground traits. We selected six aboveground traits previously 
shown to capture the GSPFF3: plant height (ph; measured in m), leaf 
area (la; measured in mm2), specific leaf area (sla; measured in mm2/mg;  
the inverse of leaf mass per area, used by those authors), leaf nitro-
gen concentration (ln; measured in mg/g), specific stem density (ssd; 
measured in g/m3) and seed mass (sm; measured in mg). We used pub-
licly available data for these traits from the latest version of the TRY 
Plant Trait Database6 (version 5.0; https://www.try-db.org/TryWeb/
Home.php, accessed April 2019). Altogether, the TRY dataset included 
over 955,000 trait measurements for 44,431 vascular plant taxa. We 
removed observations marked as juveniles or seedlings and those done 
in non-natural conditions (for example, growth chamber, greenhouse, 
field experiment, herbarium) whenever this information was avail-
able. In the analyses, each taxon was represented by an average trait 
value (excluding outliers with more than 3 s.d.) that was calculated 
first within individuals (if multiple measurements were taken from a 
single individual), then within datasets (if multiple individuals were 
measured in the same location), and finally within species (if multiple 
individuals were measured in various locations).

Plant height data included 143,429 measurements of adult plant veg-
etative height for 20,009 taxa. In most datasets, this was represented 
as observed height or average of measurements. In some cases, plant 
height was represented as the maximum observation (8,327 records). 
Specific stem density data included 26,216 measurements for 8,727 
taxa. As this trait is usually measured for woody species, we estimated 
specific stem density for herbaceous plants using leaf dry mass content 
information (123,470 measurements for 5,684 taxa), following the 
procedures described in ref. 3. Leaf area data included 111,855 meas-
urements for 13,808 taxa. Different datasets in TRY reported various 
measurements of leaf area (for example, leaf or leaflet or unknown, 
petiole included or excluded or unknown). To maximize our data cover-
age, we included each observation for which any measurement type 
was available. If different leaf area measurements were available for an 
individual observation, we included whole-leaf measurements (48% of 
records). If such data was not available, we included measurements 
where it was unknown if a leaf or leaflet was measured (12% of records) or 
where a leaflet was measured (40% of records including both simple and 
compound leaves). Similarly, if observations reported different petiole 
measurements, we included those where petiole was included (33% of 
records). For 50% of records, it was unknown if petiole was included or 
excluded, and for 17% of records, petiole was excluded. Specific leaf area 
data included 203,896 measurements for 14,222 taxa. Similarly to leaf 
area data, we included measurements with petiole (50% of records). For 
observations where such data was not available, we included measure-
ments where it was unknown if petiole was included or excluded (47% 
of records) or where petiole was excluded (3% of records). Data for leaf 
nitrogen concentration included 86,211 measurements for 10,458 taxa. 
Data for seed mass included 183,170 measurements for 25,831 taxa. 
Our final aboveground plant trait dataset included 878,247 observa-
tions for 39,260 vascular plant species.

Fine-root traits. We collected data from the GRooT database8 and 
selected four fine-root traits: root diameter (D; measured in mm), 
specific root length (SRL; measured in m/g), root tissue density (RTD; 
measured in g/cm3) and root nitrogen concentration (N; measured 
in mg/g). These traits are deemed to be relevant for root econom-
ics4,9,11,16–19,34. We followed the steps for data curation and preparation 
included in ref. 4. Specifically, we removed data from dead roots and 
excluded ferns (Polypodiopsida) and lycopods (Lycopodiopsida) due 
to their particular root morphology. We only selected data for roots 
that were either classified as ‘fine roots’ by the original authors, or 
were defined as roots of orders 1–3 (we kept the minimum order in 

the cases in which data for more than one order was available in the 
dataset), or had a diameter smaller than 2 mm (keeping the roots of 
minimum diameter in case a range of diameters was provided from the 
same study). We excluded roots with root tissue density > 1. Unlike the 
TRY database, the GRooT database does not provide information on 
whether the root data were measured on a seedling or a mature plant. 
However, since fine roots are relatively young regardless of plant age35, 
it is unlikely that the fine-root trait data are strongly affected by plant 
age. Finally, we accounted for the study design (67% of measurements 
were performed on plants in natural conditions, 32% in pots, less than 
0.1% in hydroponic experiments and 0.5% in unspecified conditions) 
and for the original publications of the trait measurements (to account 
for other study-specific factors) by making a linear mixed model for 
each trait. In these models, the log10-transformed and scaled (to 0 mean 
and 1 s.d.) trait values were used as the response variable, study design 
as a fixed factor and publication as a random factor4. We then used the 
residuals of these models as values for each trait. Finally, we removed 
outliers (with trait values more than 3 s.d. from the species average). 
To explore the potential effect of measurements not made in natural 
conditions, we repeated the whole procedure considering only field 
data, and found that the average species root trait values were highly 
correlated with the data in which pot data were also included (Pearson’s 
correlation > 0.97 for all traits). Furthermore, the relationships among 
different traits were not affected by the exclusion of pot data (Extended 
Data Table 2c). Therefore, to keep as many species as possible in sub-
sequent analyses, we decided to use the data including measurements 
taken in different conditions.

Root diameter data included 10,251 observations for 1,592 taxa, spe-
cific root length data had 9,966 individual measurements for 1,736 
species, root tissue density included 7,662 observations for 1,390 spe-
cies and root nitrogen concentration data included 5,219 observations 
for 1,253 species. In total, our belowground dataset included 33,098 
observations for 2,050 species.

Woodiness data was mainly extracted from the GRooT database8. For 
77 species with missing woodiness values, we used other published data-
bases on woodiness36 or growth form37–39. Following the growth form 
data, trees, shrubs and subshrubs were classified as woody, whereas 
herbs and graminoids were assigned as non-woody. If a single database 
or different sources reported different values for a species, we assigned 
them to both groups (woody/non-woody). For 26 species, we searched 
for woodiness info from online specimen photos or descriptions.

Imputation of missing traits. Taxonomies from the used trait sources 
(TRY and GRooT) were standardized to ‘The Plant List’ taxonomy40 
using the R package Taxonstand41. We combined the aboveground 
and fine-root trait information, resulting in a dataset that included 
1,719 species with at least one aboveground and one fine-root trait 
measured (‘full dataset’). Neither the aboveground nor the fine-root 
traits were complete (see Supplementary Table 1), with only 301 spe-
cies having complete empirical trait measurements for the ten traits 
(‘complete dataset’). We completed trait information by performing 
a trait-imputation procedure for the ten traits at the same time using 
the missForest R package42,43. Before the imputation process, all traits 
were log10-transformed, centred and scaled. We incorporated the evo-
lutionary relationships between species in the imputation process 
by including the first ten phylogenetic eigenvectors in the matrix to 
be imputed, as recommended in ref. 44. The phylogeny was obtained 
using the R package V.Phylomaker45, with the GBOTB phylogeny46 as 
the backbone. To reduce the uncertainty about the imputed trait val-
ues, after the imputation procedure, we only retained those species 
in which empirical trait measurements were available for at least 50% 
of the aboveground traits (that is, at least three aboveground traits) 
and at least 50% of the fine-root traits (that is, at least two fine-root 
traits). Finally, we estimated the reliability of the imputation procedure 
(Supplementary Methods 1). This procedure resulted in a final dataset 
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that included 1,218 species from 127 families in which 84.6% of trait 
information (10,305 records) came from empirical measurements 
and 15.4% of data (1,875 records) were imputed (‘imputed dataset’; 
Extended Data Table 1).

Ascribing species to biomes. We defined biomes by their vegetation 
type, according to Whittaker’s definition47, in the basis of the aver-
age temperature and precipitation, using the R package plotbiomes48 
(adapted from ref. 49.). We downloaded all of the records belonging to 
vascular plants (phylum: Tracheophyta) with coordinates from GBIF50 
and then selected the records belonging to the 1,218 species of the 
imputed dataset. We filtered out the records with clearly false locality 
coordinates (for example, equal latitude and longitude, both latitude 
and longitude equal to zero, and longitude/latitude outside possible 
ranges) and the records from living specimens (that is, from zoos and 
botanical gardens), conserved specimens (that is, museums) and un-
known sources. This resulted in a final dataset of 1,131 species. The 
number of geolocalized species and the number of records by species 
varied between 1 and 906,097 (1st quartile = 158, median = 1,501, 3rd 
quartile = 35,501). We assigned a value of average temperature (BIO1) 
and precipitation (BIO12) to each geolocalized record (which we repre-
sented using the R package rworldmap51; Extended Data Fig. 2), using 
Worldclim data with a resolution of 10 min of a degree, available in the 
R package plotbiomes48. We then ascribed one biome to each record 
according to their values of temperature and precipitation (Extended 
Data Fig. 2). If a species was present in more than one biome, only bi-
omes with a proportion of records greater than 5% of the total number 
of records were taken into account. Biome information for the 87 spe-
cies that were not found in GBIF was retrieved from online descriptions 
(principally from http://www.plantsoftheworldonline.org/).

Construction of the global trait space
We identified the main axes of functional trait variation by performing 
PCAs on the log-transformed and scaled functional traits, using the 
subset of species with complete empirical trait measurements for (1) 
only the aboveground traits (2,630 species), (2) only the fine-root traits 
(748 species), and (3) all ten traits together (301 species). We used Horn’s 
parallel analysis in the R package paran52 to determine the dimensional-
ity of these PCAs and applied a varimax rotation to the selected com-
ponents to facilitate the interpretation of results (see Supplementary 
Methods 2 for detailed explanations about this procedure). We refer to 
these reduced and rotated spaces as ‘functional spaces’ from now on.

Examination of the aboveground, fine-root and all-traits spaces 
revealed that, while both the aboveground and fine-root spaces could 
be summarized with two components (in correspondence with previ-
ous results3,4; see Supplementary Note 1), the spaces built with the 
ten traits (both aboveground and fine-root traits; ‘total space’) had a 
dimensionality of four (see main text for discussion). A first inspection 
of the spaces suggested that the first two components of the total space 
corresponded very markedly with the aboveground space, whereas the 
fine-root space corresponded markedly to the third and fourth compo-
nents. We examined this correspondence by estimating the correlation 
between distance matrices of the species that were common to all 
spaces (that is, 301 species with complete trait information for all traits) 
through three Procrustes tests: one considering the scores of species 
in the first and second components of the total space and the above-
ground space, one considering the third and fourth components of the 
total space and the fine-root space, and one considering the scores of 
species in the aboveground space and the fine-root space. For this, we 
used the ‘procuste.rtest’ function from the R package ade4 (ref. 53). To 
assess the significance of the correlation, permutation tests (9,999 ran-
domizations) based on Monte-Carlo simulations were generated. The 
two first Procrustes tests indicated a strong correspondence between 
the only aboveground and only fine-root spaces and the corresponding 
planes of the total space (Procrustes correlation between aboveground 

space and components 1 and 2 of the total space = 0.988, P = 0.0001; 
Procrustes correlation between fine-root space and components three 
and four of the total space = 0.982, P = 0.0001); consequently, we used 
only the total space in subsequent analyses. The third Procrustes test 
revealed a weak correspondence between the position of species in 
the only aboveground and only fine-root spaces (Procrustes correla-
tion between the aboveground space and the fine-root space = 0.178, 
P = 0.0001).

We estimated the probabilistic distribution of the species within the 
functional space based on the complete dataset by performing mul-
tivariate kernel density estimations with the trait probability density 
(TPD) and ks R packages54–57. The kernel for each species was a multi-
variate normal distribution centred in the coordinates of the species 
in the functional space and bandwidth chosen using unconstrained 
bandwidth selectors from the ‘Hpi’ function in the ks package54,55,58. 
The aggregated kernels for all species in the functional space result in 
the TPD function56,59 of plants in the corresponding space (we created 
TPD functions for the aboveground plane, fine-root plane and total 
space). Although TPD functions are continuous, to perform opera-
tions with them, it is more practical to divide the functional space into 
a D-dimensional grid composed of many equal-sized cells (we divided 
the two-dimensional spaces into 40,000 cells, 200 per dimension, and 
the four-dimensional space into 810,000 cells, 30 per dimension). 
The value of the TPD function in a given point of the space reflects the 
density of species in that particular area of the space (that is, species 
with similar functional traits). For each of these spaces, we represented 
graphically the global TPD as well as the contours containing 50%, 60%, 
70%, 80%, 90% and 99% of the total probability.

We compared the distribution of species within the aboveground 
plane, fine-root plane and total space with a null model considering 
that species are distributed following a multivariate normal distribu-
tion3,22. For this, for each part of the space (aboveground, fine root 
and total), we drew 499 samples of 301 simulated species (that is, as 
many species as in the dataset with complete empirical trait informa-
tion) from multivariate normal distributions with the same mean and 
covariance matrix as the observed data. For each of these samples, we 
estimated a TPD function and measured functional richness (amount 
of space occupied by the set of species56,59–61) at decreasing probabil-
ity thresholds (from 99% to 1% quantiles in 0.1% intervals). This way, 
we estimated a ‘profile’ of the probabilistic distributions of species, 
reflecting what proportion of the functional space is occupied at dif-
ferent probabilities. We also estimated the profile of the observed TPD 
functions (based on the 301 species). This analysis allows examination 
of how realized trait syndromes are constrained within the potential 
space of all combinations. A very high concentration of species in small 
portions of the space will show trajectories in which functional rich-
ness increases drastically as we increase the probability threshold, 
indicating that there is high redundancy at the global scale and vice 
versa. We also estimated functional divergence for the null models 
and the observed TPD functions. Functional divergence is an indica-
tor of the degree to which the density of species in the functional trait 
space is distributed towards the extremes of the distribution56,60,61: 
higher divergence in the observed distribution than expected from 
the null model would indicate that the most prevalent combinations 
of functional traits are relatively far from the centre of the functional 
space, whereas lower divergence would indicate a higher aggrega-
tion of species in the centre of the functional space (compared with 
the null model). We compared the estimations of functional richness 
at different probability thresholds and functional divergence of the 
observed and simulated data by estimating a standardized effect size 
(SES = (observed value – mean(simulated values))/s.d.(simulated 
values)). SES values indicate how many s.d. units the observed value 
deviates from the mean of the observed values, with SES > 0 indicating 
that the observed value of a given metric is bigger than the average of 
the simulated values and vice versa.

http://www.plantsoftheworldonline.org/
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Exploration of patterns within the global trait space
We then explored the distribution of different groups of species within 
the trait space. Specifically, we focused on examining whether there 
were differences in patterns between the aboveground (first and second 
components) and the fine-root (third and fourth components) planes. For 
this, we grouped species according to their woodiness (herbaceous versus 
woody species), the taxonomic family they belong to and the biomes they 
occur in. To examine these questions in a larger set of species than the 301 
species with complete empirical information for all traits, we used the 
functional space based on the imputed dataset including 1,218 species.

We performed the same set of analyses for each of the grouping cri-
teria (woodiness, families and biomes). First, we estimated how much 
of the total variation in the position of the species on the aboveground 
and fine-root planes as well as in the total space was explained by differ-
ences among groups. For this, we calculated the dissimilarities (using 
Euclidean distances) between all pairs of species considering the three 
aspects of the space (C1 and C2 for the aboveground plane, C3 and C4 
for the belowground plane, and C1, C2, C3 and C4 for the total space), 
and analysed the dissimilarity matrices using PERMANOVA (R package 
vegan62). For woodiness and families, we made a PERMANOVA consid-
ering the group to which each species is ascribed as the explanatory 
variable. For biomes, since the same species can belong to different 
biomes, we performed 500 repetitions of a PERMANOVA in which, 
in each iteration, biomes were assigned to species with a probability 
that was proportional to the relative frequency of the species in the 
biomes, and used biome as the explanatory variable. This procedure is 
equivalent to performing a partitioning of functional diversity across 
scales63,64. When the explanatory variable (for example, the family) 
explains a large proportion of variation, it means that differences 
between groups account for most of the functional variability; con-
versely, when the explanatory variable explains a little variance, most 
of the total functional variation is due to differences among species 
within groups (that is, within woodiness levels, families or biomes).

Then, we selected groups that included at least 15 species and esti-
mated their TPD functions on the aboveground and fine-root planes 
(567 woody species and 617 herbaceous species; 21 families; 8 biomes). 
We applied a quantile threshold of 99% to all TPD functions to reduce 
the potential effect of outliers on the estimation of the amount of func-
tional space occupied by the different groups56,65,66. After thresholding, 
the TPD functions were rescaled, so that they again integrated to one 
across the functional space, and the probabilities expressed in terms 
of quantiles to ease interpretability of the results.

We estimated the dissimilarity between pairs of groups as 1 – over-
lap between their respective TPD functions56,59,66–69. Compared with 
methods that consider exclusively the boundaries of the distributions, 
such as hypervolumes or convex hulls70–72, probabilistic-based dis-
similarities between TPD functions also consider the differences in 
density of species within the boundaries. This approach provides a 
more complete idea of what the differences between the functional 
spectra are, particularly in cases in which functional redundancy is 
high73–76. Given that a high proportion of the considered species might 
be clumped in particular areas of the considered space3, this methodo-
logical aspect can be particularly useful to detect differences in the 
occupation of functional spaces among groups of species. For families 
and biomes, we explored the relationships between the dissimilarities 
on the aboveground and fine-root planes by means of Mantel tests 
using the R package vegan62,77. Finally, and specifically for biomes, we 
examined the relationship between dissimilarity in their occupation of 
the trait space and climate dissimilarity. For this, for each combination 
of biome and species observed, we estimated the average mean annual 
temperature and precipitation values, by considering the GBIF records 
of each species present in the corresponding biome (see ‘Ascribing 
species to biomes’). Then, we averaged the species by biome averages 
within each biome to get biome-level mean annual temperature and 

precipitation values and built a matrix of climate dissimilarity between 
biomes using the Gower’s78 dissimilarity based on these averages. We 
explored the relationship between dissimilarity in the trait space and 
climate dissimilarity between pairs of biomes using Mantel tests.

We then estimated functional richness as the amount of functional 
space occupied by the 0.99 quantile of the corresponding TPD. Given 
that the functional richness of a group is positively related to the 
number of species that compose it, we performed null models to 
express functional richness independently from species richness79. We 
compared the observed functional richness value in each group with 
the values expected under a random species assignment; for this, for 
each group (for woody and non-woody species, for each family and 
for each biome), we randomly selected the same number of species 
from the whole dataset and estimated the TPD of this null assemblage. 
We estimated 500 null values of functional richness for each group 
using this procedure and used them to estimate a SES of functional 
richness for each group64,79. Values of SES smaller than 0 for a given 
group indicate that the amount of functional space occupied by the 
group in question is smaller than expected for that number of spe-
cies, that is, that there is higher than expected functional redundancy 
among the species in the considered group. Consequently, we used 
the opposite values of functional richness SES (that is, multiplying 
them by −1) to make the interpretation of redundancy more straight-
forward. We examined whether the levels of functional redundancy of 
species within families and biomes were higher in the aboveground 
or the belowground parts of the spectrum using paired t-tests. We 
then analysed the relationship between the functional redundancy 
aboveground and belowground at the family and biome levels using 
major axis regressions.

Finally, specifically for biomes, we examined the relationship 
between SES of functional richness and NPP. Specifically, we estimated 
aboveground, belowground and total NPP using the formulas provided 
in ref. 80. These estimations are based on mean annual precipitation, 
which we estimated for each biome as the average of the mean annual 
precipitation values of each of the species present in the biome (BIO12; 
see ‘Ascribing species to biomes’). We examined these relationships by 
regressing the values of redundancy in biomes in each aspect of the 
functional space (aboveground and fine-root planes, and total space) 
against its corresponding value of NPP (for example, aboveground 
redundancy regressed against aboveground NPP).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The datasets generated and analysed during the current study 
are available in the Figshare repository: https://doi.org/10.6084/
m9.figshare.13140146.

Code availability
The R code used in the current study is available in the Figshare repository:  
https://doi.org/10.6084/m9.figshare.13140146.
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Extended Data Fig. 1 | Correlations between traits. Pairwise correlations 
between the considered traits in the different datasets (black: full dataset with 
1,719 species, blue: imputed dataset with 1,218 species, orange: complete 
dataset with 301 species). The lower-left triangle of the matrix contains 
scatterplots of traits (after log-10 transformation) showing the relationship 
(including regression lines) between each pair of traits. The diagonal includes 
a probability density function showing the distribution of each individual 

trait. The upper-right triangle includes the value of the correlation 
coefficients and, in the case of the full dataset, the number of species with 
empirical data for both traits (imputed and complete dataset always 
considered the same numbers of species). Lines for each dataset have different 
thickness to allow visualization of the correlation and probability density 
function even when there is high overlap between lines corresponding to 
different datasets.



Extended Data Fig. 2 | Geographical, climatic and phylogenetic cover of the 
datasets. a, Global map (Robinson projection) showing the occurrences 
(according to GBIF: http://www.gbif.org) of the species in the imputed dataset 
(1,218 species with empirical information for at least three aboveground and 
two fine-root traits). b, Number of species present in the major biomes47 in the 

imputed dataset (in parentheses, number of species in the complete dataset). 
c, Distribution of species across the phylogeny of vascular plants excluding 
ferns (Polypodiopsida) and lycopods (Lycopodiopsida) in the complete  
(301 species) and imputed datasets.

http://www.gbif.org


Article

Extended Data Fig. 3 | Individual aboveground and fine-root functional 
spaces. Probabilistic distributions of the 2,630 and 748 species with complete 
empirical information for aboveground (a) and fine-root (b) traits in the 
functional spaces defined by a PCA on the corresponding traits followed by 
varimax rotation. The colour gradient (red-yellow-white) depicts different 

density of species in the defined space (red areas are more densely populated). 
Arrow length is proportional to the loadings of the considered traits in the 
resulting space. Aboveground traits are represented in green tones and 
fine-root traits in brown tones. Thick contour lines indicate the 0.5 and 0.99 
quantiles, and thinner lines indicate quantiles 0.6, 0.7, 0.8 and 0.9.



Extended Data Fig. 4 | Functional space using the complete dataset. 
Probabilistic distributions of the 301 species with complete empirical 
information in the functional space defined by a PCA followed by varimax 
rotation based on both aboveground and fine-root traits. Each panel shows a 
combination of two of the four components that define the full plant spectrum. 
The colour gradient (red-yellow-white) depicts different density of species in 
the defined space (red areas are more densely populated). Arrow length is 

proportional to the loadings of the considered traits in the resulting space. 
Only those traits that had a loading of at least 0.3 in any of the represented 
components are shown to improve visualization (see loadings of all 
components in table S2). Aboveground traits are represented in green tones 
and fine-root traits in brown tones. Thick contour lines indicate the 0.5 and 
0.99 quantiles, and thinner lines indicate quantiles 0.6, 0.7, 0.8 and 0.9.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Comparison of the occupation of the functional 
space with multivariate normal distributions. Functional richness profile 
(amount of functional space occupied by quantiles of the functional spectra), 
difference in % of functional space occupied with respect to the null models, 
and functional divergence (representing the degree to which the density of 
species in the trait space is distributed towards the extremes of the distribution 
of species; right column) considering the first and second (a), third and fourth 
(b) and all components (c). In the functional profile plots (top of the left column 
in each case) green lines represent the mean, 2.5% and 97.5% quantiles of the 
functional richness profiles of null models (n = 499) representing multivariate 
normal distributions with equivalent parameters (means and standard 
deviations) than the observed data; orange lines represent the functional 
richness profile of the observed spectra. The values of functional richness for 
the 0.5 and 0.99 quantiles of all profiles are shown for comparison. The 

difference plots (bottom of the left column in each case), represent the 
percentage of functional space occupied by each quantile in relation to the 
mean of the null models; negative percentages mean that the considered 
quantile of the observed distribution occupies less space than the average of 
the null models, and vice versa. Each repetition of the null model (n = 499) is 
represented with a thin green line, whereas thicker green lines represent the 
mean, 2.5% and 97.5% quantiles of the 499 null models, and the orange line 
represents the observed distribution. The right column of each case 
represents the observed and null values of functional divergence; two-sided  
p values were estimated by confronting the value of the Standardize Effect Size 
(SES) with the cumulative normal distribution with mean = 0 and standard 
deviation = 1. The centre, bounds of box, and whiskers of the boxplot represent 
the median, 25th and 75th percentiles, and 1.5 times the interquartile range, 
respectively.
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Extended Data Fig. 6 | Functional space using the imputed dataset. 
Probabilistic distributions of the 1,218 species with information for at least 
three aboveground and two fine-root traits (imputed dataset) in the functional 
space defined by a PCA followed by varimax rotation based on both 
aboveground and fine-root traits of the subset of species with complete 
empirical information. Each panel shows a combination of two of the four 
components that define the full plant spectrum. The colour gradient (red-
yellow-white) depicts different density of species in the defined space (red 

areas are more densely populated). Arrow lengths are proportional to the 
loadings of the considered traits in the resulting space. Only those traits that 
had a loading of at least 0.4 in any of the represented components are shown to 
improve visualization (see loadings of all components in Extended Data 
Table 2). Aboveground traits are represented in green tones and fine-root traits 
in brown tones. Thick contour lines indicate the 0.5 and 0.99 quantiles, and 
thinner lines indicate quantiles 0.6, 0.7, 0.8 and 0.9.



Extended Data Table 1 | Traits considered in the study

For each trait, we show the number of species for which empirical measurements were available, both for the full dataset, which included all common species between the TRY database (for 
aboveground traits) and the GRooT database (for fine-root traits), and for the imputed dataset, which included all species that had empirical information for at least three traits aboveground and 
two fine-root traits. In addition, 301 species had empirical information for all of the ten considered traits.
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Extended Data Table 2 | Functional spaces considering different datasets

a Eigenvalues, proportion of variance and loadings of traits in the first four principal components (PC1-PC4) of three principal component analyses (PCA) based on datasets with different 
degrees of data completeness. b Loadings of the traits in the four components after applying a varimax rotation to the corresponding PCAs. Note the general consistency between the results 
among datasets, particularly after varimax rotation is applied (see Supplementary Methods for further details), which shows that the general patterns of variation described in the main text 
are robust to species selection. c Loadings of the traits in the four components after applying a varimax rotation to the corresponding PCAs in a dataset in which fine-root traits coming from 
individuals in pots had been excluded. The component with the highest loading for each trait is shown in bold. ph: plant height, ssd: specific stem density, sm: seed mass, la: leaf area, ln: leaf 
nitrogen concentration, sla: specific leaf area, SRL: specific root length, D: root diameter, N: root nitrogen concentration, RTD: root tissue density.



Extended Data Table 3 | Angle between eigenvectors in the (non-rotated) PCA based on the complete dataset

a Angle (degrees) between the eigenvectors of all pairs of traits in the four selected principal components in the non-rotated PCA considering the 301 species with complete empirical  
information for all traits. b Cosine among and within the traits corresponding to the four main axes of variation found through the eigenanalysis of the pairwise correlation matrix from the full 
dataset: “size” (ph: plant height, ssd: stem specific density, sm: seed mass), “leaves” (la: leaf area, ln: leaf nitrogen concentration, sla: specific leaf area), “plant-fungal interactions”  
(SRL: specific root length, D: root diameter) and “root tissue conservation” (RTD: root tissue density, N: fine-root nitrogen concentration).
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Extended Data Table 4 | Functional redundancy patterns

Functional redundancy of species within considered groups (growth forms, families and biomes with at least 15 species in the imputed dataset). Observed functional richness (FRObs: amount 
of space occupied by the 0.99 quantile of the TPD function), mean of the functional richness values of 499 null models (FRNull), and standardized effect size (SES). For each group, we report 
values referring to the aboveground and fine-root planes and to the total space (4 dimensions).
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